Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Ping Zhong,* Zhiping Yang, \ddagger Shuyan Li and Riyuan Tang

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China
\# Present address: Zhangzhou Vocational and Technical College, Zhangzhou, People's Republic of China

Correspondence e-mail: zhongp0512@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.066$
$w R$ factor $=0.168$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

N-\{3-Cyano-1-[2,6-dichloro-4-(trifluoromethyl)-phenyl]-1H-pyrazol-5-yl\}benzamide

The title compound, $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$, is a tricyclic amide with an overall U-shape. $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds generate linear chains which extend along the a axis.

Received 11 November 2004 Accepted 16 November 2004 Online 27 November 2004

Comment

The title compound, (I), has been used to synthesize 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-(trifluoromethyl)thiopyrazole, \quad-amino-3-cyano-1-(2,6-dichloro-4-tri-fluoromethylphenyl)-4-(trifluoromethyl)sulfenylpyrazole and 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4(trifluoromethyl)sulfonylpyrazole, which are all good insecticides (Hatton et al., 1993).

(I)

The structure is shown in Fig. 1, with the atom-numbering scheme. The molecule contains three planar groups, forming an overall U-shape, viz. a 2,6-dichloro-4-(trifluoromethyl)phenyl, a pyrazole and a benzene ring. The dihedral angles between the pyrazole and the $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{C} 13-\mathrm{C} 18$ benzene rings are 77.47 (13) and $17.81(24)^{\circ}$, respectively. In the crystal structure, $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2) result in the formation of linear chains parallel to the a axis (Fig. 2).

Experimental

Following the method of Hatton et al. (1993), reaction of 2,6-dichloro-4-trifluoromethylamine with a suspension of nitrosyl sulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate in acetic acid, gave 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)pyrazole, which was then reacted with benzoyl chloride to give the title compound, (I). Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate/cyclohexane (1/1) solution (m.p. 483-485 K). IR ($\mathrm{KBr}, \nu \mathrm{cm}^{-1}$): 3302, 3169, 3065 2246, 1695, 1547; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.13(s, 1 \mathrm{H}), 8.11(s, 2 \mathrm{H}), 7.73$ $(d, 2 \mathrm{H}), 7.58(t, 1 \mathrm{H}), 7.45(m, 2 \mathrm{H}), 7.36(s, 1 \mathrm{H})$.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$
$M_{r}=425.19$
Triclinic, $P \overline{1}$
$a=8.4613$ (11) £
$b=9.8923$ (13) A
$c=11.4305(15) \AA$
$\alpha=91.463(2)^{\circ}$
$\beta=96.002(2)^{\circ}$
$\gamma=101.119(2)^{\circ}$
$V=932.6(2) \AA^{3}$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.898, T_{\text {max }}=0.951$
4988 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.168$
$S=1.03$
3347 reflections
253 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

C11-C4	$1.721(4)$	$\mathrm{N} 3-\mathrm{C} 11$	$1.135(5)$
$\mathrm{F} 1-\mathrm{C} 1$	$1.298(6)$	$\mathrm{N} 4-\mathrm{C} 12$	$1.374(5)$
$\mathrm{O} 1-\mathrm{C} 12$	$1.213(4)$	$\mathrm{N} 4-\mathrm{C} 8$	$1.384(4)$
N1-N2	$1.356(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.361(5)$
N1-C8	$1.361(4)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.396(5)$
N1-C5	$1.431(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.451(5)$
N2-C10	$1.327(4)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.479(5)$
N2-N1-C8	$112.7(3)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$103.9(3)$
N2-N1-C5	$117.7(3)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	$113.9(3)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 5$	$129.5(3)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11$	$118.0(3)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{N} 1$	$102.6(3)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$128.1(3)$
C12-N4-C8	$123.7(3)$	$\mathrm{N} 3-\mathrm{C} 11-\mathrm{C} 10$	$177.8(5)$
$\mathrm{F} 1-\mathrm{C} 1-\mathrm{F} 3$	$110.4(5)$	$\mathrm{O} 1-\mathrm{C} 12-\mathrm{N} 4$	$121.6(4)$
$\mathrm{F} 3-\mathrm{C} 1-\mathrm{C} 2$	$113.4(4)$	$\mathrm{O} 1-\mathrm{C} 12-\mathrm{C} 13$	$122.7(4)$
N1-C8-C9	$107.0(3)$	$\mathrm{N} 4-\mathrm{C} 12-\mathrm{C} 13$	$115.7(3)$
N1-C8-N4	$119.7(3)$	$\mathrm{C} 18-\mathrm{C} 13-\mathrm{C} 12$	$118.9(4)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 4$	$133.3(3)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$122.8(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{~N}^{3}$	0.86	2.33	$3.149(4)$	159

Symmetry code: (i) $x-1, y, z$.
All H atoms were initially located in a difference Fourier map but were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-$ $1.00 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2_{\text {eq }}(\mathrm{C})$. Although the F atoms display large ellipsoids, no disorder model could be defined.

Figure 1
The structure of (I), showing the atomic numbering scheme, with displacement ellipsoids drawn at the 50% probability level.

Figure 2
Packing diagram, viewed down the c axis, showing the linear chain generated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (dashed lines).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (No. 20272043) and the Natural Science Foundation of Zhejiang Province (No. M203001).

References

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Hatton, L. R., Bunain, B. G., Hawkins, D. W., Parnell, E. W., Pearson, C. J. \& Roberts, D. A. (1993). US Patent No. 5232940.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

