Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ping Zhong,* Zhiping Yang,‡ Shuyan Li and Riyuan Tang

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China

Present address: Zhangzhou Vocational and Technical College, Zhangzhou, People's Republic of China

Correspondence e-mail: zhongp0512@163.com

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.006 Å R factor = 0.066 wR factor = 0.168 Data-to-parameter ratio = 13.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-{3-Cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-1*H*-pyrazol-5-yl}benzamide

The title compound, $C_{18}H_9Cl_2F_3N_4O$, is a tricyclic amide with an overall U-shape. $N-H\cdots N$ hydrogen bonds generate linear chains which extend along the *a* axis. Received 11 November 2004 Accepted 16 November 2004 Online 27 November 2004

Comment

The title compound, (I), has been used to synthesize 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-(trifluoromethyl)thiopyrazole, 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-(trifluoromethyl)sulfenylpyrazole and 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-(trifluoromethyl)sulfonylpyrazole, which are all good insecticides (Hatton *et al.*, 1993).

The structure is shown in Fig. 1, with the atom-numbering scheme. The molecule contains three planar groups, forming an overall U-shape, *viz*. a 2,6-dichloro-4-(trifluoromethyl)-phenyl, a pyrazole and a benzene ring. The dihedral angles between the pyrazole and the C2–C7 and C13–C18 benzene rings are 77.47 (13) and 17.81 (24)°, respectively. In the crystal structure, $N-H\cdots N$ hydrogen bonds (Table 2) result in the formation of linear chains parallel to the *a* axis (Fig. 2).

Experimental

Following the method of Hatton *et al.* (1993), reaction of 2,6-dichloro-4-trifluoromethylamine with a suspension of nitrosyl sulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate in acetic acid, gave 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)pyrazole, which was then reacted with benzoyl chloride to give the title compound, (I). Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetae/cyclohexane (1/1) solution (m.p. 483–485 K). IR (KBr, ν cm⁻¹): 3302, 3169, 3065 2246, 1695, 1547; ¹H NMR (CDCl₃): δ 10.13 (*s*,1H), 8.11 (*s*, 2H), 7.73 (*d*, 2H), 7.58 (*t*, 1H), 7.45 (*m*, 2H), 7.36 (*s*, 1H).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Crystal data

 $\begin{array}{l} C_{18}H_9Cl_2F_3N_4O\\ M_r = 425.19\\ Triclinic, P\overline{1}\\ a = 8.4613 (11) Å\\ b = 9.8923 (13) Å\\ c = 11.4305 (15) Å\\ \alpha = 91.463 (2)^{\circ}\\ \beta = 96.002 (2)^{\circ}\\ \gamma = 101.119 (2)^{\circ}\\ V = 932.6 (2) Å^3 \end{array}$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.898$, $T_{max} = 0.951$ 4988 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.168$ S = 1.033347 reflections 253 parameters H-atom parameters constrained

Table 1

Selected geome	etric parameters	(A, '	°).
----------------	------------------	-------	-----

Cl1-C4	1.721 (4)	N3-C11	1.135 (5)
F1-C1	1.298 (6)	N4-C12	1.374 (5)
O1-C12	1.213 (4)	N4-C8	1.384 (4)
N1-N2	1.356 (4)	C8-C9	1.361 (5)
N1-C8	1.361 (4)	C9-C10	1.396 (5)
N1-C5	1.431 (4)	C10-C11	1.451 (5)
N2-C10	1.327 (4)	C12-C13	1.479 (5)
N2-N1-C8	112.7 (3)	C8-C9-C10	103.9 (3)
N2-N1-C5	117.7 (3)	N2-C10-C9	113.9 (3)
C8-N1-C5	129.5 (3)	N2-C10-C11	118.0 (3)
C10-N2-N1	102.6 (3)	C9-C10-C11	128.1 (3)
C12-N4-C8	123.7 (3)	N3-C11-C10	177.8 (5)
F1-C1-F3	110.4 (5)	O1-C12-N4	121.6 (4)
F3-C1-C2	113.4 (4)	O1-C12-C13	122.7 (4)
N1-C8-C9	107.0 (3)	N4-C12-C13	115.7 (3)
N1-C8-N4	119.7 (3)	C18-C13-C12	118.9 (4)
C9-C8-N4	133.3 (3)	C14-C13-C12	122.8 (3)
-			

Z = 2

 $D_x = 1.514 \text{ Mg m}^{-3}$

Cell parameters from 1331

Mo $K\alpha$ radiation

reflections

 $\mu = 0.39 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int}=0.020$

 $\theta_{\rm max} = 25.5^{\circ}$

 $h = -10 \rightarrow 9$

 $k = -7 \rightarrow 11$

 $l = -13 \rightarrow 13$

Block, colorless

 $0.28 \times 0.18 \times 0.13 \ \mathrm{mm}$

3347 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0761P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 0.7071P]

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

 $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

2427 reflections with $I > 2\sigma(I)$

 $\theta = 2.5 - 24.6^{\circ}$

Table 2Hydrogen-bonding geometry (Å, $^{\circ}$).

5 0	00 ,				
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$	
$N4-H4\cdots N3^i$	0.86	2.33	3.149 (4)	159	

Symmetry code: (i) x - 1, y, z.

All H atoms were initially located in a difference Fourier map but were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.95–1.00 Å and with $U_{\rm iso}({\rm H}) = 1.2_{\rm eq}({\rm C})$. Although the F atoms display large ellipsoids, no disorder model could be defined.

Figure 1

The structure of (I), showing the atomic numbering scheme, with displacement ellipsoids drawn at the 50% probability level.

Packing diagram, viewed down the *c* axis, showing the linear chain generated by $N-H\cdots N$ hydrogen bonds (dashed lines).

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXL*97.

This work was supported by the National Natural Science Foundation of China (No. 20272043) and the Natural Science Foundation of Zhejiang Province (No. M203001).

References

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Hatton, L. R., Bunain, B. G., Hawkins, D. W., Parnell, E. W., Pearson, C. J. & Roberts, D. A. (1993). US Patent No. 5232940.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.